MTH 201

Multivariable calculus and differential equations Homework 9
 Green's theorem, Stokes' theorem, and Divergence theorem

Green's theorem

1. Use Green's theorem to evaluate the line integral along the given positively oriented curve
(a) $\oint_{C} x y d y-y^{2} d x$, where C is the square cut from the first quadrant by the lines $x=1$ and $y=1$.
(b) $\oint_{C} x y d x+x^{2} y^{3} d y$, where C is the triangular curve with vertices $(0,0),(1,0)$, and $(1,2)$ with positive orientation.
(c) $\oint_{C} y^{2} d y+3 x y d x$, where C is the positively oriented boundary of semi-annular region in the upper half plane between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
2. Evaluate the line integral $\oint_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$, where C is the positively oriented boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
3. Verify Green's theorem on the annular region $D: 0.5 \leq x^{2}+y^{2} \leq 1$ for the vector field $\mathbf{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \vec{i}+\frac{x}{x^{2}+y^{2}} \vec{j}$.
4. Evaluate the line integral $\oint_{C} \mathbf{F} \cdot d r$, where $\mathbf{F}(x, y)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \vec{i}+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \vec{j}$ and C is a positively oriented simple closed curve that encloses the origin.
5. Let $\mathbf{F}(x, y)=P(x, y) \vec{i}+Q(x, y) \vec{j}$ be a vector field on an open simply connected domain D such that P and Q have continuous first order partial derivatives and $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ on D. Use Green's theorem to show that \mathbf{F} is a conservative vector field.

Stokes' theorem

6. Use Stokes' Theorem to compute the surface integral \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}$ where
(a) $\mathbf{F}(x, y, z)=2 y \cos z \vec{i}+e^{x} \sin z \vec{j}+x e^{y} \vec{k}$ and the surface S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$ oriented upward.
(b) $\mathbf{F}(x, y, z)=z^{2} \vec{i}-3 x y \vec{j}+x^{3} y^{3} \vec{k}$ and the surface S is the part of the paraboloid $z=5-x^{2}-y^{2}$ above the plane $z=1$ with upward orientation.
7. Use Stokes' theorem to evaluate the line integral $\int_{C} \mathbf{F} \cdot d r$, where $\mathbf{F}(x, y, z)=z^{2} \vec{i}+$ $y^{2} \vec{j}+x \vec{k}$ and C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$ with counterclockwise rotation.
8. Let C be a simple closed smooth curve that lies in the plane $x+y+z=1$. Show that the line integral $\int_{C} z d x-2 x d y+3 y d z$ depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane.

Divergence theorem

9. Verify that the divergence theorem is true for the vector field \mathbf{F} over the solid region R

MTH 201 Homework 9 (Continued)
(a) $\mathbf{F}(x, y, z)=3 x \vec{i}+x y \vec{j}+2 x z \vec{k}$ and R is the cube bounded by $x=0, x=1, y=$ $0, y=1, z=0$, and $z=1$.
(b) $\mathbf{F}(x, y, z)=x^{2} \vec{i}+x y \vec{j}+z \vec{k}$ and R is the solid region bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
10. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=z \vec{i}+y \vec{j}+x \vec{k}$ and S is the boundary surface of the solid ball $x^{2}+y^{2}+z^{2} \leq 16$.
11. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=x y \vec{i}-\frac{y^{2}}{2} \vec{j}+z \vec{k}$ and the surface S consists of the three surfaces $z=4-3 x^{2}-3 y^{2}, 1 \leq z \leq 4$ on the top, $x^{2}+y^{2}=1,0 \leq z \leq 1$ on the sides, and $z=0$ on the bottom.

